Overexpression of the Maize ZmNLP6 and ZmNLP8 Can Complement the Arabidopsis Nitrate Regulatory Mutant nlp7 by Restoring Nitrate Signaling and Assimilation
نویسندگان
چکیده
Nitrate is a key nutrient that affects maize growth and yield, and much has yet to be learned about nitrate regulatory genes and mechanisms in maize. Here, we identified nine ZmNLP genes in maize and analyzed the functions of two ZmNLP members in nitrate signaling. qPCR results revealed a broad pattern of expression for ZmNLP genes in different stages and organs with the highest levels of transcript expression of ZmNLP6 and ZmNLP8. When ZmNLP6 and ZmNLP8 were overexpressed in the Arabidopsis nitrate regulatory gene mutant nlp7-4, nitrate assimilation and induction of nitrate-responsive genes in the transgenic plants were recovered to WT levels, indicating that ZmNLP6 and ZmNLP8 can replace the essential roles of the master nitrate regulatory gene AtNLP7 in nitrate signaling and metabolism. ZmNLP6 and ZmNLP8 are localized in the nucleus and can bind candidate nitrate-responsive cis-elements in vitro. The biomass and yield of transgenic Arabidopsis lines overexpressing ZmNLP6 and ZmNLP8 showed significant increase compared with WT and nlp7-4 mutant line in low nitrate conditions. Thus, ZmNLP6 and ZmNLP8 regulate nitrate signaling in transgenic Arabidopsis plants and may be potential candidates for improving nitrogen use efficiency of maize.
منابع مشابه
Nitrate Supply-Dependent Shifts in Communities of Root-Associated Bacteria in Arabidopsis
Root-associated bacterial communities are necessary for healthy plant growth. Nitrate is a signal molecule as well as a major nitrogen source for plant growth. In this study, nitrate-dependent alterations in root-associated bacterial communities and the relationship between nitrate signaling and root-associated bacteria in Arabidopsis were examined. The bacterial community was analyzed by a rib...
متن کاملNIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis
Seeds respond to multiple different environmental stimuli that regulate germination. Nitrate stimulates germination in many plants but how it does so remains unclear. Here we show that the Arabidopsis NIN-like protein 8 (NLP8) is essential for nitrate-promoted seed germination. Seed germination in nlp8 loss-of-function mutants does not respond to nitrate. NLP8 functions even in a nitrate reduct...
متن کاملEffect of AtNRT2.1 transgene on HATS nitrate uptake in transgenic Nicotiana plumbaginifolia
To investigate the impact of overexpression of AtNRT2.1 transgene from Arabidopsis on nitrate uptake rate and to understand the regulation of endogenous HATS by nitrate and glutamine amino acid (Gln) in tobacco plants, wild-type and transgenic (F line) plants grown on soil for 4 weeks were transferred to hydroponic culture in a controlled-environment with a 16/8h L:D photoperiod at 24? C/20...
متن کاملNitrate foraging by Arabidopsis roots is mediated by the transcription factor TCP20 through the systemic signaling pathway.
To compete for nutrients in diverse soil microenvironments, plants proliferate lateral roots preferentially in nutrient-rich zones. For nitrate, root foraging involves local and systemic signaling; however, little is known about the genes that function in the systemic signaling pathway. By using nitrate enhancer DNA to screen a library of Arabidopsis transcription factors in the yeast one-hybri...
متن کاملNitrate: nutrient and signal for plant growth.
The mineral nutrient needed in greatest abundance by plants is nitrogen. Plants, however, must compete for nitrogen in the soil with abiotic and biotic processes such as erosion, leaching, and microbial consumption. Soil nitrogen is also lost when crops are harvested and plant material is removed from the soil. To be competitive, plants have evolved several mechanisms to acquire nitrogen at low...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017